E-Mail processing with Perl

Mark A.C.J. Overmeer*
MARKOV Solutionsf

August 21, 2002

Mail::Box is currently maintained and developed under a generous grant
provided by the Dutch NLnet Foundation

1 Introduction

Perl is a powerful language for automating administrative processes; whether
it be for system administration, customer interaction via web-pages, or re-
porting purposes. Over 3800 modules which can help you with your tasks
are available on Perl’s Open Source archive CPAN?. At the moment of this
writing, August 2002, about 75 of these modules are directly related to han-
dling e-mail. This paper may help you use some of them, especially focussed
on those related to the Mail: :Box module.

1.1 Competing Implementations

Reading through the list of e-mail related modules, you get the impression
of overlap: many modules implement the same functionality. For instance,
there are at least five implementations for parsing a message from file into
structures which can be handled by Perl. Why is there so much overlap?
There are various reasons why overlapping implementations are available
in the Perl libraries — and those reasons apply to many other Open Source
projects as well. They are caused by the following reasoning of programmers:

1. “The implementation is bad”’

*mark@overmeer .net, http://mark.overmeer.net
thttp://solutions.overmeer.net

lwebsite: http://www.nlnet.nl

2CPAN’s main archive can be found at http://www.cpan.org

Quite a few modules on CPAN are very old, and really should be re-
placed by modules which cover the same functionality but use improved
syntax®. In searching for a useful module, the programmer gets a bad
feeling about the existing code, and produces a new implementation
for the same thing.

However, this is easily said, but harder to achieve. A replacement
module passes through many phases:

e not at all functional

e partly functional, still many bugs
e partly functional — alpha

e partly functional — beta

e more functionality, fewer bugs

e acceptable functionality — release

e more functional than the original module

Although it is often easy to see that a module must be improved (users
with little experience can see that), it requires more experience to de-
termine how a module can be improved. It usually takes a lot of effort
to get to the state that a rewritten module actually is improving the
situation by provide better code.

The conclussion must be that most modules look worse than they ac-
tually are: they are working with acceptable functionality. The quali-
fication bad is only acceptable if you provide a better implementation.

2. “Oh, I didn’t know there was an implementation already”

CPAN has grown too large. It is very hard to find out which modules
can satisfy your needs: On which versions of Perl does it run? On
which platforms does it run? How functional is the module?

If you start coding because nothing is available on CPAN yet, after a
few months of work you may see someone else publishing his implemen-
tation addressing the same problem. So: publish early and get people
involved that way. However, in early stages you do not supply suffi-
cient functionality, which drives people immediately away from your
code never to come back. There is no easy answer to this dilemma.

3Perl’s syntax is under continuous development, which makes the language more pow-
erful with every new version. Most e-mail related core modules pre-date the time when
real references and Object Orientation where added to the language, hence are full of tricks
to circumvent these deficiencies.

3. “It is too complicated to use”

The subjective feeling of complicated is caused by a few factors. Most
complexity with modern programming languages is not in learning the
language itself, but rather in learning how to use its libraries. Study-
ing the libraries will consume most time. Some of Perl’s libraries (for
instance Perl/Tk) are much larger than Perl itself!

Large libraries easily get marked as too complicated, just because the
user underestimates the complications involved in a correct implemen-
tation. The average user is not aware of requirements in RFCs*, com-
patibility issues with broken applications, environments of other users
of the same library, or even of what the real needs of his own program
are.

Of course, the author of a module can help fight the feeling of complica-
tion by providing a simple interface to the library, good documentation,
examples, and support. But the module will still be large and complex.

It is obvious that modules are in various conditions, created with different
objectives in mind, for different applications, and written by different pro-
grammers. In general, the e-mail related modules for Perl are too small,
contain little to no documentation, and were created by many independent
programmers all using their own programming style. Still people need to use
them, and often they succeed. But how much effort do they have to put in
it, and what is the quality of the result?

1.2 Message Parsing

Let us focus on the subject of this paper: parsing e-mail messages with
Perl. At first glance, e-mail message parsing looks really simple. Current
implementations on CPAN are much too complicated! Well... Yes: simple
messages are simple to parse. A simple message:

From: me@example.com
To: you@somewhere.aq
Subject: This is a demo

This is the message body.
Bye!

A simple parser for that:

‘RFC=Request For Comment, the way protocols are standardized on Internet. See
http://wuw.ietf.org/rfc.html for a full list.

my %head;

while(<>)

{ last if $_ eq "\n";
my ($name, $content) = split /\:/, $_, 2;
$head{$name} = $content;

}

my Q@body = <>;

When you look at Mail: : Internet — the mother of all mail related modules —
you see that it actually is implemented this way. Really straight forward.

Back in 1995 when Mail: :Internet was created, e-mail message were this
simple. But e-mails are certainly not that simple anymore! My cousin posts
the latest pictures of her children from New Zealand by e-mail. Students post
to each other PowerPoint presentations to decorate jokes with animations
and sound. In recent years, e-mail changed from small single-part text-
based messages into often large, multi-parted multi-media documents. The
simplicity of Mail: : Internet (with multi-part messages not even supported)
is certainly not sufficient anymore.

Of course extensions — like the MIME: :Entity family — do exist, but each
solve only a few of the complications which are associated with more complex
messages. Using these packages, you also need to know too much about
details of the e-mail protocols.

Some of the complications which e-mail related modules have to deal with:

e header lines can appear more than once in the same message header.
They should be treated case-preserving. Order preserving is nice. Wrap-
ping long lines (folding) is only permitted for some of them;

e multi-parts and nested multi-part messages are quite hard to handle.
Start thinking about the complications involved in constructing them.
Each message part looks a bit like a message itself, but they are slightly
different composed. What about deleting one part? Does it imply that
the main message’s identity is changed?

e the message body can be encoded (base64, quoted-printable, ...) for
transfer, even when it contains plain text. The text can use varying
character sets. What if we want to automate a reply included in a piece
of our text encoded as ISO 8859-15, and the message we reply to is in
UTF-8? Or it is structured in HTML?

e various folder types, some organizing the messages together in one file
(like Mbox folders), others as separate files within one directory (like

MH and Maildir), or separate entities on a remote machine (like IMAP
and POP);

e differentiated treatment of labels which relate to messages status (is
it read, replied upon, etc). Sometimes these labels are stored in the
messages header as Status and X-Status lines. However, there are
differences in implementation and interpretation of these header lines.
Maildir encodes the labels in the filename of the message, while MH
maintains a special label file per folder.

e how do we create a reply to a binary message? Or for a multi-part? Or
one part within a multi-part?

Maybe this list will warn you not to create your own implementation for
handling mail folders.

A decent mail handling module must hide as many of the complications as
possible from the users. Of course, the module implementing everything
that has to do with e-mail gets large and hence harder to use and harder to
learn. However, hopefully it enables everyone to create powerful applications
without the need to know all the details about correct mail.

1.3 Development of Mail: :Box

During the year 2000, I needed a module to process mail folders and discov-
ered that the Mail: :Folder module was not supported anymore. Mail::-
Folder is (was) able to manage a set of MIME: :Entity messages in various
kinds of message folders. In need of a functioning folder handler, Mail: :Box
version 1 was developed.

Mail: :Box version 1 was based on the existing MIME: :Entity messages. The
further I went with my module, the more problems I encountered with these
existing modules. Most problem reports I received were the result of these
old modules I used.

Then in mid-2001, I decided that all e-mail related modules were due for
a big clean-up. A rewrite from the bottom, fully object oriented, intensively
documented, and uniformly structured was the way to go. The result is
Mail: :Box version 2.

The goal of Mail: :Box is to be
e one consistent set of packages;

e documented on different levels of abstraction;

e casily extendible in an object oriented way;
e hiding as much nastiness about messages as possible; and

e providing strong building blocks to construct new messages, and replies,
forwards, and bounces of messages.

In the next chapters, we will see a few things that Mail: :Box can do for you.
Where applicable, some other e-mail related modules will be introduced as
well.

2 Mail: :Address

Mail: :Address is part of the MailTools bundle of modules. Most of the
modules in that bundle are best avoided, but Mail: :Address is a relatevely
positive exception.

Use Mail::Address to convert text into e-mail address containing ob-
jects, or the reverse: convert objects into text. The Mail::Address object
provides access to the knowledge in the address information.

2.1 Parsing a line with addresses

The following program demonstrates how Mail: :Address is used to get e-
mail addresses from a string:

use Mail::Address;

my $line = ’info@example.com (Overmeer, Mr M.)’;
my @addr = Mail::Address->parse($line);

my $first = $addr[0];

print $first->comment,"\n"; # (Overmeer, Mr M.)
print $first->name,"\n"; # Mr M. Overmeer
print $first->address,"\n"; # infoQexample.com

Different textual representations of e-mail addresses are handled. The parse
method returns all addresses which are contained on the line as list. Each ad-
dress is converted into a separate Mail: :Address object. The name method
is most impressive, knowing how different cultures prefer to mangle personal
names and then de-mangle them.

2.2 Creating an address

The following example shows the reverse process: create an address object
yourself, and then format it into a correct string.

use Mail::Address;

my $a = Mail::Address—>new(’Mark Overmeer’,’me@example.com’);
print $a->format,"\n"; # Mark Overmeer <me@example.com>

3 MIME: :Types

The MIME: : Types module knows how to handle mime-types right. A MIME
compliant® message contains information about the kind of data which is
stored in the body. That information is stored in the Content-Type line.
For example:

Content-Type: text/plain; charset="us-ascii"

In this example, the mime-type of the message is text/plain. Information
about the character set used to compose the text is not part of the mime-type.

3.1 Information about a mime-type

Given the string describing a mime-type, the MIME: : Types module can pro-
vide details about it.

use MIME::Types;
my $alltypes = MIME::Types->new;

my $plain = $alltypes->type(’text/plain’);
print $plain->mediaType; # text
print $plain->subType; # plain
if ($plain->isBinary) ... # false
if ($plain->isAscii) ... # true
print $plain->encoding; # quoted-printable

The module handles the case-insensitivity of the mime-type description, and
provides a little more background information. As a service, it can tell you
whether the body is binary, and how the data should preferably be encoded
for transmission.

5The MIME (Multipurpose Internet Mail Extensions) standard is described in RFCs

2045 up to 2049, and defines how the header lines are shaped. The RFCs also define
acceptable content for specific lines.

3.2 Information about filename extensions

The MIME: : Types module also knows about filename extensions in relation
to mime-types. Some of these notions are operating system specific.

use MIME::Types;
my $alltypes = MIME::Types->new;

my $h = $alltypes->mimeTypeOf ("index.html");
print $h->simplified; # text/html
print "$h"; # text/html

my $g = $a11types—>mimeType0f(uGIFu);
print $g->type; # image/gif

my $z = $alltypes->mimeTypeOf ("a.gz");

print $z->type; # application/x-gzip
print $z->simplified; # application/gzip
print $z->subType; # gzip

In mime-types, a leading ‘x-’ indicates the use of a name which is not officially
registered. So, new names will be introduced with a x-, and after registration
this flag will disappear. The MIME: : Types module understands this.

4 Mail::Message

This is the first object from the Mail: :Box module we will discuss. Mail: :Box
is all about messages which are stored in folders, but messages can also live
(temporarily) outside a folder and therefore can be discussed separately first.

Every MIME compliant message contains

e a header: a few lines which describe the message’s body, information
about the transport of the message, and so on. This is also called the
meta information about the message; and

e a body: the actual content.

In Mail::Message, these parts are represented by two separate objects:
a Mail::Message::Head and a Mail::Message::Body. Let’s take them
apart.

4.1 A message header

The header of a message contains information about the message, excluding
the payload which is stored in the body. This information is stored in well-
described lines, for example:

From: you@example.com
Date: Wed, 4 Oct 2000 14:22:35 -0400 (EDT)
Message-Id: <200010041822.e94IMZr19712@example.com>
To: me@home.museum
Received: (from majordomo@localhost)
by example.com (8.11.0.Beta3/8.9.3) id e94IMj420302
for everyone; Wed, 4 Oct 2000 14:22:45 -0400
Subject: Font metrics
Status: RO
Content-Type: text/plain; charset="us-ascii"
Content-Length: 1620
Lines: 32

The label (field) of a header line is case-insensitive, but has a preferred no-
tation: each word in the field should start with a single capital.

Some of the lines — like Received in the example — may be folded over
multiple lines when they get too long to be printed nicely on a screen. This
is only allowed for the well-described structured lines, not for other lines.

Each (folded) line can have three parts:
<field> : <body> ; <comment>

The comment including its leading semi-colon is optional. Although it doesn’t
sound that way, the comment part may contain very useful information as
well: somethimes it contains attributes.

4.1.1 Get a header line

Once you have a message, you can ask about lines in the header:

my $msg =; # get it somewhere

my $date = $msg->head->get(’date’);

print "$date"; # Wed, 4 Oct 2000 14:22:35 -0400 (EDT)
$date->name; # Date

$date->print; # Date: Wed, 4 Oct 2000 14:2...

The $msg is constructed some way, or contained in a folder; we’ll see later
how to get one. The $date returned is either undef (header field not found)
or a Mail::Message: :Field object. This object stringifies to the body of
the header line, excluding the comment.

To simplify access to the header lines, you can also directly ask the message
for information in the header. Consider the following alternatives:

my $ms; # get it somewhere
y g g

my $head = $msg->head;
print $head->get (’DATE’);
print $head->get(’content-type’);

print $msg->get (’DATE’);
print $msg->get(’content-type’);

It doesn’t really matter which solution you take. The former will be a tiny
bit faster though.

4.1.2 Special fields

Of course the previous section was valid, however it is much too low level. For
instance, the To and From header lines contain e-mail addresses. And did you
know that those lines are overruled by Resent-To respectively Resent-From
lines if present?

A few fields get special treatment. Fields which start with Content-, like
Content-Type and Content-Length are managed by the message’s body
(explained in 4.2.2). Fields which contain e-mail addresses have their own
methods which return Mail: :Address objects. Example:

my $from = $message->from;

print $from->name; # Mr M. Overmeer
my Qto = $message->to;
my Qcc = $message->cc;

When there are Resent- lines present, only the data in those lines is returned,
as it should be. Otherwise, the usual set of lines is parsed.

4.2 Message body

The body is the payload of the message. Mail: :Box stores the body of each
message in opened folders temporarily in an efficient way. As user of the

module, you do not to know which way: it may be kept in memory or in
a file. Independent of the way it is stored, the data is available in various
ways.

When the message is created or read, some header lines are copied into
the body object. This is especially important because we will process the
body, which may change the Content-Length of the body, or the number
of Lines. The changes must be reflected in the meta information about the
body. Some processing steps may even modify the Content-Type. Often
you want to decode the body to be able to use it, which means that the
Content-Transfer-Encoding changes to none.

4.2.1 Getting the body

A message can supply two different versions of its body: the encoded body,
and a decoded version of the body. Of course, in an application it is often
more useful to ask for the decoded version:

my $msg ces # get it somewhere

my $encoded = $msg->body; # are you sure?
$encoded->print; # oops, base64 encoded text?

my $decoded = $msg->decoded;
$decoded->print; # perfect

Do not worry: if the body was not encoded in the first place, then no time
or resources are consumed to “decode” it. However, if there is work to be
done, the $decoded points to a different body object, which no longer has
anything to do with the message from which it came.

4.2.2 Information about the body

Information about the body which was originally found in the header is
copied into the body object. When you have a decoded body of a message,
this data may (will) differ from what was found in the header.

The following examples may be useful:

print $decoded->transferEncoding;

was Content-Transfer-Encoding
print $decoded->nrLlines; # was Lines
print $decoded->type->body; # text/html

my $type = $decoded->mimeType; # a MIME::Type!
print $type->subType; # html

$decoded->print # works best

unless $decoded->mimeType->isBinary;

$decoded->print # even simpler with

5

unless $decoded->isBinary; # this shortcut

Constructing a message

There are a few ways to construct a new message. Think about whether the
new message has a relation to an existing message or not. If so, what is that
relationship? Although the methods are quite similar in use, their results
can differ quite a lot.

The following message constructors are available:

Mail:

Mail:

Mail:

:Message->read (*STDIN) and Mail::Message->read(\@lines)
Let’s start with the worst solutions. These methods are required only
when an external source delivers the message data this way. For in-
stance, when you write a procmail® application, sendmail will start
your program and provides the message on STDIN. You are left without
options, so need to read.

:Message->build(data)

Create a message based on a set of loose data: throw in a number of
header lines, and some scalars, arrays, or file-handles with text, and
the message is created.

:Message->buildFromBody ($body)

A more careful approach to construct a message: first construct a body
object, and then turn it into a full message with a header. Of course, the
content related header lines are constructed based on the data which
is stored in the body.

$msg->reply

Create a reply based on a received message. This implies that the des-

6procmail is used to process incoming mail at the moment it arrives on the system. It

can be

used to remove spam at arrival, or channel messages to separate folders based on

sender.

tination of the newly created message is the originator of the source
message. Some header lines keep track of this game of answering an-
swers, and they are updated accordingly.

$msg->forward
Forwarding a message implies that you want someone else to read the
message as well, but at the same time wish to add some notes to the
message. The resulting message will contain (a part of) the original.
Some header lines are automatically created as well.

$msg->bounce
Use this when you need to forward a message to someone without mod-
ifying the content. Some minor modifications in the message header are
made (specifically some Resent- headers are added), but that’s all.

The next sections discuss small examples for each constructor. Look at the
manual-page of Mail: :Message: :Construct for full details. The examples
are taken from the examples/ directory which is distributed in the Mail: :Box
module.

5.1 Constructing with read

To start off simple: read parses a message from a file handle, a string, or an
array of lines. Be warned that all lines must end with a newline, including
the last line.

General examples:

use Mail::Message;
my $msgl = Mail::Message->read (*STDIN);
my $msg2 = Mail::Message->read(\@lines, log => ’PROGRESS’);

my $msg3 = Mail::Message->read(<<MSG) ;
Subject: hello world
To: you@example.com
warning: empty line required !!!
Hi, greetings!
MSG

When you write your program in a way such that lines are first collected in
an array, and then this read method is called to produce a Mail: :Message,
you are not on the right track. In such cases it is better to use two steps to
produce the best result:

use Mail::Message;

my Q@lines = ... ; # contains 8bit encoded html
my $body = Mail::Message::Body->new

(data => \@lines

, mime_type => ’text/html’

, transfer_encoding => ’8bit’

);
my $msg = Mail::Message->buildFromBody($body) ;

Have a look at the Mail: :Message: :Body: :Construct manual page to learn
more.

5.2 Constructing a message in one step

Building a whole message from components is more flexible than using read:
specify data and some header lines, and get a fully dressed-up message in
return.

A number of missing lines will be added for you; the Content- lines are
calculated or predicted. When more than one source for data is specified, a
multi-part message is produced. When the data needs to be encoded, it will
automatically get encoded.

If one Mail: :Address or an array of them are specified for a header line,
they are flattened to a nicely formatted string.

A full program:

use Mail::Message;
use Mail::Address;

my $to = Mail::Address->new(’your name’, ’you@tux.aq’);
my $signature = Mail::Message: :Body—>new(...);

my $msg = Mail::Message->build

(From => ’me@home.nl’
, To => $to
, Cc => ’everyone@example.com’

, data => ["This is\n", "the first part of\n"
, "the message\n"]

, file => ’myself.gif’
, file => ’you.jpg’
, attach => $signature

)

The example above explicitly provides three header lines. Next to those, at
least the obligatory Message-ID will be added, plus many lines about the
type and size of the body. The resulting message is a multipart containing
four parts: the first specified in-line, then two as external files, and the last
as a prepared body object.

5.3 Constructing a message from a body

The buildFromBody method is related to build, but is used with a previously
composed body object. This is better suited for creating (nested) multi-part
messages, where more control on the produced message structure is required.

The overly complicated example below shows that header lines may also be
passed as Mail::Message::Fields. In this case, you overrule the content-
type as stored in the body: don’t do that at home!

my $body = $some_message->decoded; # or
my $body = Mail::Message::Body->new(...);

my $type = Mail::Message::Field->new
(’Content-Type’, ’text/html’
, ’charset="us-ascii'’

)3
my @to =
(Mail::Address->new(’Your name’, ’you@example.com’)
, ’you@example.info’
);

my $msg = Mail::Message->buildFromBody
($body

, From => ’me@example.nl’
, To =>\@to

, $type

);

5.4 Constructing a reply

A reply is based on a source message, and by default constructs a message
ready to be sent back to the author of the source message.

There are many ways to get that to work. The complicating factor is the
wish to utilize parts of the source message in the reply. This is especially
hard when you want to created automated replies: think about the receipt of
binary or multi-parts which have to be treated differently from simple plain
text messages.

An example:

use Mail::Message;
my $msg = ...; # get it somewhere

my $pgp_key = Mail::Message: :Body. ..
my $reply = $msg->reply

(prelude => "No spam, please!\n\n"
, postlude => "\nGreetings\n"

, strip_signature => 1

, signature => $pgp_key

, group_reply =>1

);

Please do not forget to terminate all lines in the prelude and postlude with
a newline.

With the right options, Mail: :Box tries to do its best for you, in any sit-
uation. When a reply is made on a multi-part message, it tries to figure
out which part is the primary content to be used in the answer composi-
tion. When the source message’s body is binary, it will be attached, and the
prelude plus postlude are combined into a nice covering text.

5.5 Constructing a forward

Once you have seen reply you have seen forward: its interface is rather the
same. The forwarded message also composes a new message based on the
original, but it is encapsulated differently: the whole message body is taken
to be forwarded by default, not only an extract.

Also some of the header lines will be updated differently. For instance,
the subject line will start with “Re:” for the reply, and with “Forw:” for
the forward. Besides, while a reply knows where the message must be sent,
the forward requires that information to be specified.

5.6 Constructing a bounce

Too many automated applications forward or reply their messages when
they really should use bounce. This may be caused by the fact that bouncing
messages was a latter addition to the MIME specifications.

Examples for bounce can only be small:

use Mail::Message;
my $msg = ...

my $bounce = $msg->bounce
(To => ’postmaster@home’
, Bcc => \@the_whole_world
):

$bounce->send;

This example also contains a new feature: by calling send on a message it
will be... sent. The Mail::Box module contains packages which support
various message transmission mechanisms. The easy to use send method
tries hard to find a way which works in your environment. Of course, this is
configurable as well.

6 Mail::Box

So far, only single messages have been discussed. Single messages are cre-
ated in your program, and disappear when your program stops. To preserve
messages they must be stored in folders. The Mail::Folder name-space is
occupied by an implementation which is not maintained, so the implementa-
tion which can handle Mail: :Message objects was named Mail: :Box.

There are many kinds of mail folders, which all differ quite substantially in
how they store a message. They all employ different run-time administration
of the messages they contain. But in the general case you do not have to
know these distictions if you are using the Mail: :Box module.

6.1 The Mail::Box: :Manager

The Mail::Box::Manager keeps track on all open folders, so you cannot
accidentally open the same folder twice in your program. It also autodetects
the folder type, which saves you work, and at the same time compiles the

required modules for you. Your conclussion must be: always start with the
manager.

In the next example, we open a folder via the manager:

use Mail::Box::Manager;

my $mgr Mail::Box: :Manager->new;
my $inbox = $mgr->open(’=Inbox’):
die unless defined $inbox;

$inbox->close;

As you see, no need to specify whether this is an Mbox, MH, or Maildir type
of folder. When the name of the folder starts with an equals-sign (=), it will
look for the name in a — folder type dependent — default directory.

Important to know: folders are opened read-only by default. Use
my $inbox = $mgr->open(’=Inbox’, access => ’rw’);

to allow updates. When the folder is closed, it is automatically de-registered
from the manager. When the folder is closed explicitly (calling method
close), goes out of scope’, or the program terminates, the changes will be
written.

6.2 Getting the messages

Of course, the only reason to open folders is to get to the messages which
are located in them. The main methods for this are

my $msg = $folder->message(3); # fourth
my $msg = $folder->message(-1); # last
my $msg = $folder->messageld($msgid); # that one

foreach my $msg ($folder->messages) # all subjects
{ print $msg->subject, "\n";
}

print $_->subject, "\n"
foreach $folder->messages; # all subjects

7A my variable only has limited visibility, the scope. When the result of opening a folder
is caught in such variable, it will get destroyed with the variable at the end of its scope.

print scalar $folder->messages; # count

my $msg = $folder->message(3);
$msg->delete; # flag for deletion
$folder->message (3)->delete; # same

There are many more methods available, which are described in the manual
pages. The deletion of a message takes place when the folder is closed, not
immediately.

6.3 Moving messages around

Next to retreiving messages from a folder, you are also able to add messages
to a folder. Be warned that some of these methods work on the manager,
others on a folder.

$mgr->moveMessage ($otherfolder, $msg);
$mgr->copyMessage ($otherfolder, $msg);
$mgr->appendMessage ($otherfolder, $msg);
$folder->addMessage($msg); # a Mail::Message

It is permitted to move, copy, or append more than one message at once.
When the specified folder is open in the program, actions will take place on
that opened folder. Otherwise, the updates are made as cheaply as possible,
preferably without opening the destination folder.

When you move a message between folders of a different kind, Mail: :Box
will coerce them: adapt them to the requirements of the folder. All methods
shown above return the coerced version of the supplied message.

It is also permitted to use Mail::Internet and MimeEntity messages
in most of this kind of operations. This means that you can intergrate
Mail: :Boxin your existing applications.

6.4 Playing with folders

As final example of the power of Mail: :Box a small example which plays
with folders:

use Mail::Box::Manager;
my $mgr = Mail::Box::Manager->new;

my $pop = $mgr->open(’pop3:user:passwd@mail.isp.net’)

or die "Failed to open POP connection: $!\n";

my $loc = $mgr->open(’InBox’, access => ’rw’
, type => ’'mh’, create => 1)
or die "Cannot open inbox: $!\n";

$pop—>copyTo($loc, delete_copied => 1, select => ’!spam’);
$mgr->closeAllFolders;

In the example above, messages are moved from a remote host using POP3
to a local folder except when they are flagged to contain spam (unsollicited
mail).

7 Further reading

This paper only briefly introduced a few of the modules which can be used to
handle e-mail with Perl. It is only an introductory story, and you certainly
need to read more to write real-life applications.

To learn more about Mail: :Box, you may need additional information from

e theMail: :Box website at http://perl.overmeer.net/mailbox, which
lists more resources and tutorials;

e the mailing-list mailbox@perl.overmeer.net, to get your questions
answered;

e a browsable (HTML) version of the documentation at
http://perl.overmeer.net/mailbox/html/, which is also as a whole
downloadable from the website;

e the scripts/ and examples/ directories included in the distribution.

Powerful libraries require study before they can be used, and Mail: :Box is
no exception to this rule. Sometimes they look too complex, but often that’s
because people underestimate the complications involved. Be glad for every-
thing that is offered for free. Contribute with complaints and suggestions, so
existing modules can improve. New implementations can only declare others
'bad’ if they themselves are in a "better’ state.

As final remark: be very, very, very careful not to lose e-mail by mistakes in
your program. People will hate you when e-mail gets lost.

