Messages in Mail: :Box

Mark A.C.J. Overmeer?
AT Computing bv'
Nijmegen, The Netherlands

March 12, 2002

Abstract

The Mail::Box module version 2 contains a new implementation for
e-mail message handling. The functionality of Mail: :Box covers that of
many existing (old) Perl modules. The primary advantage over those,
is improved processing and handling capabilities, required for modern e-
mail. Besides, Mail::Box has a consequent naming-, documentation-,
and programming style. With an optimal lazy approach, message parsing
is delayed to improve performance in handling (the often huge) folders.
However, the added functionality is invisible to the user.

The whole module is much too large to be documented in this con-
ference paper, so only functionality related to handling one single simple
mail message is discussed in detail. Other parts of the package are only
listed.

Introduction

Electronic mail is a larger success on Internet than web-pages. Not that unex-
pected if you experience the complications of finding your way to the sites with
useful information. E-mail is much easier: exchange your e-mail address with
someone you know, and the practical use is there.

Take a look at CPAN!, to find dozens of modules which are available to
handle e-mail. Distinct purposes for those modules partially explain this high
number. However, I expect the main reason behind this number of modules is
caused by the general idea that messages are so easy, it is a shame to use all
those complicated existing modules.

This observation is partially right: simple messages are simple to parse. A
simple message:

From: me@example.com
To: you@somewhere.aq
Subject: This is a demo

*e-mail: mark@overmeer.net, web-site: http://mark.overmeer.net
web-site: http://www.ATComputing.nl
lweb-site: http://www.CPAN.org.

This is the message body.
Bye!

All you need to parse this is

my %head;

while(<>)

{ last if $_ eq "\n";
my ($name, $content) = split /\:/;
$head{$name} = $content;

}

my @body = <>;

When you look at Mail: : Internet, the mother of all mail related modules, you
see that it actually is implemented this way. Really straight forward.

Back in 1995, when Mail: :Internet was created, life was this simple. But e-
mail is certainly not that simple anymore! Nowadays, students post each other
PowerPoint presentations to decorate jokes with images. My cousin posts the
latest pictures of her children from New Zealand.

In recent years, e-mail changed from simple single-part and text-based mes-
sages into often large, multi-part and multi-media documents. The simplicity
of Mail: :Internet (with multi-part messages not even supported) is certainly
not sufficient anymore. Of course, extensions do exist, like the MIME: :Entity
family, but they solve only a few of the complications which accompany harder
messages. Using these packages, you also often need to know too much about
mail.

During the year 2000, I needed a module to process mail folders and found
out that the Mail: :Folder was not supported anymore. Mail: :Folder is (was)
able to manage a set of MIME: :Entity messages in various kinds of message
folders. In need for a folder handler, Mail: :Box version 1 was developed.

Mail: :Box version 1 was based on the existing MIME: : Entity messages. The
further I went with my module, the more problems I met with these existing
modules. Most problem reports I got were the result of these old modules I
used.

Then in mid-2001, I decided that the e-mail modules needed a big clean-up.
A clean-up from the bottom-up, fully object oriented, intensively documented,
and uniformly structured. The result is Mail: :Box version 2.

1 Overview

The main components of Mail: :Box version 2 are listed below. Only the use of
messages is discussed in detail in the next sections of this article. Mail: :Box
handles

messages A message object combines a message header and a message body.
A message is received from someone, ready to be transmitted to other
people (possibly on other systems) or to be archived in a file. A message
has a text-only content, hence binary data is encoded (usually with base64
encoding).

folders A folder? contains a set of messages. At the moment only MBOX
and MH types of folders are supported, although future extension with
EMH, IMAP, and MAILDIR folder types was kept in mind during the
implementation.

The very common MBOX folder has one file containing multiple messages,
each separated in the folder file by a special line. The MH folder has one
file per message, and is a directory itself. They are quite different, but
these differences are fully hidden for users of the Mail: :Box package. For
instance, even MBOX folders have (simulated) sub-folders now.

folder manager To avoid accidents, you may use the folder manager to open
folders. This manager will avoid opening the same folder twice, and auto-
detect folder type. Folders also will automatically get closed when the
program terminates. The second task for the manager is to control the
message thread managers: the administrators of relations between mes-
sages.

message thread manager Some messages are related; one is the start mes-
sage of a discussion, and the replies refer to that message. And there may
be replies on the replies, and so on. The thread manager collects these
message relations, as you wish for the joined content of multiple fold-
ers. For instance, threads can be traced over the InBox and the OutBox
together.

mail folder lockers Various applications use different methods to lock folders.
Different locking mechanisms are implemented, but the user has to know
which one to use him/herself. One locker combines all locking methods,
hoping to work for sure, stopping all other applications.

folder via tie as ARRAY or HASH A folder looks like an array of mes-
sages, so it is obvious that a tie on the folder into an array may simplify
the code. Simply push a new message on the @outbox, and the folder is
extended.

Each message has a unique message-id, so a tie to a hash designed with
the id as key is also a small step. For instance in case of message threads,
the messages refer to one another based on the id. In this case, a hash is
the choice of representation to simplify the discovery of relations.

sending messages A special section of Mail: :Box is devoted to sending mes-
sages. Usually messages are automatically delivered into the system (by
sendmail writing them to your inbox folder, or calling procmail).

For sending, you need to create a transport object explicitly, with the
possibility to set configuration options, or simply call $message->send.
In the latter case, Mail: :Box does its best to find a way to deliver the
message, implicitly creating a transport object.

logging and tracing For each single object, you may specify what to do with
reports: warning, error, progress, notices, and trace can be logged in

2This package is named Mail::Box because the name-space Mail::Folder was already
occupied. A mail box and a folder are synonyms, although a folder sounds better.

Mail
::Box::Mbox
::Message

Mail::Box
::Message

Figure 1: Relations between the main objects

the object and/or shown immediately. This is organised by the Mail::-
Reporter package, which is the base-class for all complicated objects in
Mail: :Box.

Figure 1 shows the relationships between the main objects. The mailbox man-
ager maintains a set of mail boxes, which each maintain a set of mail box
messages. The MBOX kind of mail boxes contain MBOX kind of messages.
The MBOX messages extend the general folder messages by having a location
within the folder file. A general mail box message is derived from a general
message, which stands alone and is not persistent.

2 The data-structure of a message

The central object of Mail: :Box is the Mail: :Message, a general message. This
message can be used for many purposes —even outside the scope of folders, for
instance in other applications it could even be used for HTTP traffic.

A message object maintains one header and its related body. That is less
straight forward than it looks, as there are three kinds of headers and seven
kinds of bodies implemented!

2.1 Message headers

Three kinds of headers are defined. Of course: a message has one really well
defined header —a steady set of header lines®. However, not all of these lines are
known during the whole execution of the program.

The three distinguished states of a header:

all lines are known The Mail::Message::Head::Complete contains all
header lines for the message, no line is missing for sure. Of course, a
complete header consumes more memory than a header where not all
lines are known. Do not underestimate the time which is needed to create
the objects to store these header lines either.

some lines are known A Mail::Message: :Head: :Subset contains —as the
name suggests— only a subset of the header lines. However, it knows
where it can get the rest. Objects of this kind are often called stubs.

There are various situations which result in this kind of headers. For
instance, some folder types have a fast index, which contains some header
lines* for each message in the folder. Reading such fast indices will produce
subset headers. Using this subset of lines, you postpone reading the whole
message until unknown header lines are needed.

As long as you only use fields which are known, the subset header will stay.
But on the moment you (accidentally?) access an unknown header line
the full header is taken. The message’s internal mechanisms will process
the real header and put it in place of the subset header. Only the time
delay is visible to the user.

no lines are known (yet) Mail::Box is lazy —as lazy as possible. If it costs
time or resources to get information, and the data is not immediately
needed, then it will be delayed. For instance, in an MH folder each file
in the folder directory represents one single message. The order of the
messages is defined by the name of the file (they are numbered sequen-
tially), and with that the total number of messages is defined. It is cheap
to find these facts out. On the other hand, it is really expensive to open
each of these files to get some or all of the headers. So, as long as no-one
needs any of the header lines, the header parsing will be postponed: a
Mail: :Message: :Head: :Delayed object is created as stub for the header
for each message in the folder.

Both incomplete header types are introduced for one reason only: performance.
Introducing lazy objects is cheap: stub creation costs as much as creating an
object to store a single header line; it is much faster than parsing and creating a
full header. It is profitable to create many lazy stubs in vain, just to accidentally
save one message to get parsed too many.

3Bach header line is stored in a separate Mail::Message::Field object.
4Usually, the often needed Subject, To, From, and Message-ID fields are included in these
subsets. There may be more, there may be less.

2.2 Message bodies

Message headers only exist in three forms, but there are many more body types.
Additional types are still under development or on the wish list. As there is
only one complete header type, there are a few body types which contain all
information, each maintaining the full content in a different way. Smart body
storage is again mainly important for the performance. When you are not
interested in the structures used to store the data, your programs will work but
may be slightly slower than optimal.

By default, the Mail: :Box folder readers make smart decisions when reading
the data of messages. By opening a folder, you end up with messages with
different kinds of body storage —and you do not have to care® at all! All types
of bodies support methods to get the content of the body as a whole in one
scalar, as list of lines, or as file-handle®. Some bodies provide more functionality.
Especially the multi-part body is quite powerful.

The bodies store their data

as string The Mail: :Message: :Body: :String stores the whole message body
in one scalar. This can be useful when the data is binary: it can be written
at once, or converted as a whole. Storage as lines is un-natural in such
situations.

as lines For text processing, getting the body content as list of lines is easiest
in most cases. When you store data as a ::String object, the internal
scalar must be split on new-line characters each time the separate lines are
requested. For textual data, the Mail: :Message: :Body: : Lines object is
preferred as it stores the lines separately and supplies these lines without
additional work.

as file Some messages are huge. Especially Word documents, PowerPoint pre-
sentations, PostScript files, and pictures can size into megabytes. In this
case, it is very costly to keep this data in memory during the run of
your program. The data is maintained in an external temporary file by
the Mail: :Message: :Body: :File object for as long as the folder is open.
When the folder is closed, or the whole program terminates, these tem-
porary files are automatically removed. Especially decoded binary bodies
have a special affection to this kind of bodies.

external Like the previous kind the data is stored in a file. However, in this
case not in a temporary file but a persistent file. The actual folder is
reduced in size, so considerably faster to read and write. The message in
the folder contains an indication where to find this external body. When
the message is removed, the external file will be too.

The external body is under development. It still has to be decided how
to transform a temporary body object into an external file with a decent
unique name.

5You can control the type of the created bodies with the body_type option when the folder
is opened. A code reference can be supplied, which must determine the type of the body to
be created based on the known header information.

6 A full list methods can be found in the Mail: :Message: :Body manual page. That package
is the base for all body types.

in-folder In this situation, the body of the message is never taken from the
folder, but kept as inner-file within the original folder using I0: : InnerFile.
This is a smart trick, but not always applicable: as we will see later, bodies
can live without message and without folder.

In-folder bodies are best suited for MH folders, where each message has
its separate file. The inner-file adds an offset to the location of bytes in
the body, so simply skipping the header of the message.

This type is not yet implemented. When implemented, there may be two
different body types to get it right: one for use in MBOX-like folders, and
one for the MH-style folders.

All above cases are bodies with real data —these are relatively straight forward.
However, there are other cases:

delayed body In this case, the location of a body is known but the data is
not taken from the folder yet, just like the delayed header we saw in
the previous chapter. Again Mail: :Box tries to be maximally lazy to
get optimal performance. A delayed body is by default the preferred body
type for large bodies”. The stub is implemented by the Mail: :Message: : -
Body: :Delayed.

multi-part body By far the most complicated body is the multi-part body,
which is used to maintain messages with attachments. In many appli-
cations, you must implement special treatment for these bodies. In the
current real-life e-mail usage, it is not possible to ignore these complex
messages anymore.

The handling of multi-part bodies is implemented in the Mail: :Message: : -
Body: :Multipart package. The main difference with normal bodies is
that this one contains parts (which most people call attachments). Each
partisaMail: :Message: :Part, which extends the general Mail: :Message.
A part contains fewer header lines than a normal message, and has an en-
closing (parental) body.

3 Implementing delayed objects

Parsing the text of the header may be delayed, and the body may be delayed
as well. This is cause for some complications inside the module: one way or
the other, the real header and body must get parsed when the data is needed
without the user noticing this.

3.1 Stubbing delayed objects

In these situations, the developer’s choice is between two solutions:

"To determine whether the body must be delayed or not, you can specify a code reference
with the extract method when the folder is opened. The function is called by the parser with
the complete header it has just read as argument. Based on that information, the decision
is made between true (extract now) or false (delayed). If extracted, the body_type is used to
determine which type of body will be created.

1. Create a wrapper around or within each method, which checks whether
the data is already available, or still must be loaded:

sub myMethod() {
my $self = shift;
$self->forceload unless $self->islLoaded;
doMyThing() ;

}

It is the simpler approach when looked at it from the level of language
knowledge required to implement it. However it is costly: when the data
has been read, the checks will still take place. Even more important: it is
risky because with inheritance it is not directly clear whether all wrappers
are correctly implemented. When a new method is added to a base class,
there may be a need for a wrapper in one or more of its sub-classes, which
is hard to get tracked down.

2. Create an object which only implements methods which are do-able with
the known dataset. When a ‘missing’ method is called, AUTOLOAD takes
over, parses the real data into a real object, and replaces the stub by
the real object (for instance, replaces the delayed header by the complete
header in the administration of the message). Finally the method is called
on the real object. Simplified:

package IamReal;
sub myMethod() {doMyThing()}

package IamNotReal;

sub AUTOLOAD() {
my $self = shift;
$self->readData();
bless $self, ’IamReal’;
$self->myMethod () ;

package main;
my $obj = IamNotReal->new() ;
$obj-—>myMethod(); # Triggers realization

In this example, AUTOLOAD transforms a IamNotReal into a IamReal ob-
ject.

The second solution is without the penalty of continuous checking, but has a
nasty side problem: for AUTOLOAD to work, it cannot inherit as the realized
object does. This means in our case that

Mail::Message::Head::Subset—>isa(’Mai1::Message::Head’)

would fail. To solve this, the delayed objects inherit from Object: :Realize::-
Later®, which overrules isa and can. This class also supplies the right AUTOLOAD.
This class is a powerful stub for delayed loading.

80bject::Realize::Later is separately available from CPAN.

3.2 Message status transition

The body which contains data can only be part of a message with full knowledge
about the header. Figure 2 shows the stati which a message can pass through
during its life within the program. When a folder is opened, the extract option

%

MH Delayed head
eader Delayed body

Subset head
Delayed body

not lazy or body

Complete head
Complete body

Complete head
Delayed body

Figure 2: The message’s life.

specifies when the mail box reader must be lazy —being delayed. By default, the
reader will not be lazy on very small messages, but will be for large ones; it is
purely an optimization issue. In figure 2, body means that there is a request for
the content (body) of the message. A “complete body” is any body except the
delayed version.

In any case, the transitions take place without knowledge by the user of
Mail: :Box: every move is handled by the internals of the module. The messages
stay in the “complete header with complete body” state until the folder is closed
and the last reference to the message within your program is removed.

4 Derived messages

All messages contain a header and a body, but still not all the messages are the
same. Where the Mail: :Message object can store any message, this function-
ality is extended for use in mail boxes by the Mail: :Box: :Message. Messages
which are part of a mail box have a reference to that folder, and a sequence
number. They also know in which file they reside. Figure 3 displays all objects
which relate to a single message, and the class relationships.

For every folder type, this class is extended even further: for MBOX folders,
the separator line which is used in the folder file is kept. For MH folders, the
message’s filename is stored. These message specializations are implemented in
the Mail: :Box: :Mbox: :Message and Mail: :Box: :MH: :Message, respectively.

MM::Head Mail::Box
::Subset
::Delayed

Figure 3: Message hierarchy with related objects

In multi-part messages, the body of the main message (which may, or may
not be in folder) contains a set of parts (attachments). Each of these parts is a
message by itself, although with little different rules than any general message.
For instance, these Mail: :Message: :Part objects require fewer header lines.

4.1 Message type coercion

It is possible to add MH messages to MBOX folders: they are coerced from one
type, via a normal message, into the next message type. Coercion is automati-
cally done where needed.

Some methods in Mail: :Box offer extra flexibility by accepting foreign mes-
sage objects. As examples, for sending of a message or adding a message to
a folder, the subjected message is coerced into an acceptable message object.
MIME: :Entity and Mail: :Internet messages are coerceable without any prob-
lem. Reverse conversions are also implemented. This means that old Perl pro-
grams can easily be combined with Mail: :Box.

A simple code example tells it all:

use Mail::Box::Manager;
use MIME::Entity;

my $mgr
my $folder

Mail: :Box::Manager->new;
$mgr->open(’0utBox’, access => ’a’);

10

. MM ::Body
“Message | —@
:Multipart

MM ::Body
::String
::Lines
=Fille
::External
::Delayed

Mail::Message->new(file => ’image.gif’);
MIME: :Entity->build();

my $msgl
my $msg2

$folder->addMessage ($msgl, $msg2);
$folder->close;

The folder type is auto-detected, but defaults to the creation of an empty MBOX
type of folder. Both $msgl and $msg?2 are coerced into the right message type —
Mail::Box: :Mbox: :Message. This means a complex conversion for the MIME: : -
Entity foreigner, and simply re-blessing for the first message. Both messages
will get linked to the folder (required for all Mail: :Box: :Message’s), and get
a message separator to be used in the folder file (as required for Mail: :Box: : -
Mbox: :Message’s).

5 Handling a message

The reason to send messages in the first place is to pass knowledge on. The
message body contains this knowledge. The header contains some information
about source and destination of the message, as well as delivery method and
time stamps. The header is mainly accompanying information, and as such
most lines are not of interest when you process the content.

Exceptions to this claim are the Content- lines in the header: they contain
important details about the information in body.

5.1 Content information
The header lines which start with Content- are

Content-Type This field represents the MIME-type® and maybe some extra
attributes. Examples of MIME-types are text/plain and image/gif. A
whole Content-Type field may read:

Content-Type: text/plain; charset="us-ascii"

Content-Transfer-Encoding Data in a body is to be encoded during trans-
port, to avoid conflicts with the protocols used in the transmission. Tex-
tual data is hardly encoded, usually 7bit or 8bit is used. Western lan-
guages are seldomly affected by these encodings, the Japanese and Chinese
are less fortunate.

Binary data and data of unknown complexity is by default base64 en-
coded. In former days, uuencoding was more popular. Each encoding—
decoding pair of methods is implemented in a separate package based
on Mail: :Message: : TransferEnc, and managed by Mail: :Message: :-
Body: :Encode.

Content-Disposition This field tells how the data must be presented to the
user. The data tells whether a mail user agent (MUA) should present this
data directly when the message is opened (inline), or only on demand
(attachment). Next to this, it may contain the default name of a file to
unpack the body into.

9MIME-types are handled by the MIME: : Types module, separately available on CPAN.

11

Of course when a body is passed around between methods, the kind of informa-
tion which is stored in the body must be passed-on with it. These Content-*
header lines are copied from the header object into the body object when the
message is read from file. This means that you get the information —for instance
the MIME-type— from the body object. Do not use the header object for this
information: the body may have been decoded, recoded, or converted before
you get your hands on it. The body’s MIME information will reflect this, but
the header of the message won’t.

print $message->get (’Content-Type’); # WRONG
print $message->head->get(’Content-Type’); # WRONG
print $message->body->type; # RIGHT
print $message->decoded->type; # BETTER

5.2 From message to body

A body is more than just the data: it is also the knowledge about the data.
From now on: keep in mind that the body is more important than the header,
even more important than a message. Focus in your programs on treating the
bodies.

You can retrieve the body of a message in two ways:

e $message->body returns the real body of the message, which may be
encoded in any format. Unless you are sure what you are doing, this is
not the way to go.

e $message->decoded returns a body which contains the decoded version
of the message’s body. This means that actions are taken to create a body
with transfer encoding set to none.

Various ways to handle a body are implemented in two separate files which
are automatically compiled when their methods are needed. They both add
functionality to the Mail: :Message: :Body general body class. These packages
are

Mail: :Message: :Body: :Construct Complex body handling methods, often re-
quired for the complex message handling methods in Mail: :Message: : -
Construct.

Mail: :Message: :Body: :Encode Control over body encoding and decoding. For
now only transfer encodings are handled, but for instance html to text and
vice versa is on the wishlist.

One of the methods which is offered is concatenate, which joins bodies and
strings into a new body. It takes care of the conversions required to achieve
this: all concatenated pieces must be unified'® into the same MIME-type before
gluing them into one new body. Concatenate is exemplary for all methods
which process bodies: they take one or more bodies, and return a new body
object with the result data.

Actions on bodies will never modify the body in place. They may however

10Unification is tried by the unify method.

12

return the source body if no changes were needed. For instance, if you call
concatenate with only one body, that body will be returned unmodified.

Creating body object after body object may seem clumsy and heavy, but is
in practice not that bad: a body object is in most cases just an array of lines
plus the updated information from the Content lines. The auto destruction and
clean-up of Perl will take care of intermediate body objects which are not used
anymore.

5.3 From body to message

The general procedure to go from one message to another, for instance to create
your own special reply!! is to take the body from its source message, decode it,
change it, and then add it to a new message.

So, let’s first create the reply:

use Mail: :Box::Manager;

my $mgr = Mail::Box::Manager->new;
my $inbox = $mgr->open($ENV{MAIL});
exit unless defined $inbox;

my $source = $inbox->message (6)->decoded;

my $reply = $source->concatenate
("This is an automatic reply.\n", "\n"
, $source

, "Please ignore (as we do with your message).\n"

)

And now the (too simple) reply is prepared in a body referred to by $reply.
The body type of $source, and its MIME-type and encoding, determines the
shape of the $reply.

Then, there are three ways to put a body in a message:

Start with a message First instantiate a message, and then add a body like
this:

my $head = Mail::Message: :Head: :Complete->new;
$head->add (From => ’me@example.com’);
$head->add(To => ’you@anywhere.aq’);

my $message = Mail::Message->new(head => $head);
$message->body ($newbody) ;

At the moment you add the body, the body is converted into a transfer
encoding which is sufficient to safely transport the message. Thereafter,
the content information is copied from the body into the header. Finally,
also the message-id in the header is changed to avoid the danger that the
same message-id is used for two different messages.

!11Mail::Message: :Construct already defines a powerful reply method, but you may want
some different solution.

13

Construct message from body A nicer route to follow is to take a body, and
then build a message from it. This procedure is more straight forward than
the previous:

my $message = Mail::Message->buildFromBody

($body

, From => ’me@example.com’
, To => ’you@anywhere.aq’
)3

The From and To lines are obligatory'?, because no message can do without
them. The buildFromBody is described in Mail: :Message: :Construct, a
package which extends the functionality of Mail: :Message with complex
message processing functionality.

Construct message with body A third approach creates a message with the
body using the build method. In this case, the body plays a less important
role.

my $message = Mail::Message->build
(From => ’me@example.com’
, To => ’you@anywhere.aq’
, attach => $body
);

You may specify multiple data (text), file (file-name or file-handle), and
attach (body and message objects) for the construction of a message.
If only one kind of information is supplied, a single-part message is con-
structed, otherwise a multi-part is the result.

The last method is more powerful but less controlable then the second. The
first method should be avoided, although it works.

5.4 From message to message

You didn’t forget that the body is more important than the message? Don’t let
that idea out of your mind. You cannot go directly from message to message
(unless you use some complex methods like reply, forward, or bounce), but
need intermediate stages which process the body of the source message into the
body for the destination message.

Figure 4 depicts the following program from the viewpoint of body transforma-
tion:

use Mail::Message;

Mail::Message->new(...);

my $source
my $decoded = $message->decoded;

my $joined = $decoded->concatenate

12The From and To lines are not required to build a Mail: :Message: :Part.

14

$source

bui ldFromBody () _

decoded() concatenate()
I

I $decoded $joined

Content—*

$signature

Figure 4: From message to message.

("One line in front\n"

, $decoded
, $signature # also a body...
)3
my $dest = Mail::Message->buildFromBody ($joined) ;

The code for the Mail: :Box user stays simple. Different required conversions
and handling the message organisation is hidden (as it should be!).

As a final step, the $dest message can be stored in a folder or transmitted. An
example of message storage:

use Mail::Box::Manager;

my $mgr = Mail::Box::Manager->new;
$mgr->moveTo (’OutBox’, $dest);
$dest->send;

The manager keeps track on opened folders. It will also handle transport of
messages between folders. Some actions can also be taken when the folder is
not open. The manager first checks whether OutBox is opened. If so, the message
is added to that folder using $folder->addMessage ($message). Coercion into
the message type which is required for the folder takes place. For instance, if
the folder is an MBOX, the message separating From-line is created.

When the folder is not open, the manager will auto-detect the folder type,
and then will add the message without opening the folder. Of course, also in
this case it will coerce the message to the right type before doing that.

6 Concluding

To finalise this overview on possibilities of messages offered by the Mail: :Box
module, the conclusion must be that handling messages is much harder than

15

just parsing a few header lines and the body. A valuable module must supply
access and processing methods, and these are quite hard.

Only a very small part of the implemented functionality is discussed in this
paper. We only discussed single-part messages deeply. For the other components
of Mail: :Box you have to use the normal manual pages and the example scripts
which are included in the module. The Mail::Box-Overview and Mail::-
Box-Cookbook manual pages are good points to continue the study.

About the Author

Mark Overmeer graduated as MSc in Computer
Science at the University of Nijmegen in the
Netherlands. After six years of experience as
UNIX system administrator in a large data-center,
he joined AT Computing to give training in UNIX,
web-technologies, and programming languages.
Next to his professional activities, Mark maintains
and develops a few web-sites and is actively con-
tributing to the Perl community.

At the moment Mark maintains about quite
a number of e-mail related Perl modules on
CPAN: the MailTools collection, MIME: : Types,
and Mail: :Box.

16

